697 research outputs found

    Design, fabrication and testing of support structures for biomimetic water filters

    Get PDF

    Application-Aware Distribution Trees for Application-Level Multicast

    Full text link
    In this paper, we present an algorithm to construct application-aware distribution trees for application-level multicast. Unlike existing approaches, the distribution trees do not solely depend on network characteristics but also on the application semantics of the transmitted packets. In the presented algorithm, the application may specify an individual priority for each packet-receiver pair. The distribution tree is then constructed such that the higher the priority, the more direct the path from the sender to the packet\'s destination. This comes at the cost of an increase in link stress -- the more direct a path, the less likely it is that it can be integrated efficiently into an overlay multicast distribution tree. Our algorithm takes this tradeoff into account and constructs efficient application-aware distribution trees. We demonstrate the performance and characteristics of the algorithm through extensive simulation

    Functional asymmetry of transmembrane segments in nicotinic acetylcholine receptors

    Get PDF
    Nicotinic acetylcholine receptors are heteropentameric ion channels that open upon activation to a single conducting state. The second transmembrane segments of each subunit were identified as channel-forming elements, but their respective contribution in the gating process remains unclear. Moreover, the detailed impact of variations of the membrane potential, such as occurring during an action potential, on the transmembrane domains, is unknown. Residues at the 12′ position, close to the center of each second transmembrane segment, play a key role in channel gating. We examined their functional symmetry by substituting a lysine to that position of each subunit and measuring the electrical activity of single channels. For 12′ lysines in the α, γ and δ subunits rapid transitions between an intermediate and large conductance appeared, which are interpreted as single lysine protonation events. From the kinetics of these transitions we calculated the pK a values of respective lysines and showed that they vary differently with membrane hyperpolarization. Respective mutations in β or ε subunits gave receptors with openings of either intermediate or large conductance, suggesting extreme pK a values in two open state conformations. The results demonstrate that these parts of the highly homologous transmembrane domains, as probed by the 12′ lysines, sense unequal microenvironments and are differently affected by physiologically relevant voltage changes. Moreover, observation of various gating events for mutants of α subunits suggests that the open channel pore exists in multiple conformations, which in turn supports the notion of functional asymmetry of the channe

    Genome-wide transcription start site profiling in biofilm-grown Burkholderia cenocepacia J2315

    Get PDF
    Background: Burkholderia cenocepacia is a soil-dwelling Gram-negative Betaproteobacterium with an important role as opportunistic pathogen in humans. Infections with B. cenocepacia are very difficult to treat due to their high intrinsic resistance to most antibiotics. Biofilm formation further adds to their antibiotic resistance. B. cenocepacia harbours a large, multi-replicon genome with a high GC-content, the reference genome of strain J2315 includes 7374 annotated genes. This study aims to annotate transcription start sites and identify novel transcripts on a whole genome scale. Methods: RNA extracted from B. cenocepacia J2315 biofilms was analysed by differential RNA-sequencing and the resulting dataset compared to data derived from conventional, global RNA-sequencing. Transcription start sites were annotated and further analysed according to their position relative to annotated genes. Results: Four thousand ten transcription start sites were mapped over the whole B. cenocepacia genome and the primary transcription start site of 2089 genes expressed in B. cenocepacia biofilms were defined. For 64 genes a start codon alternative to the annotated one was proposed. Substantial antisense transcription for 105 genes and two novel protein coding sequences were identified. The distribution of internal transcription start sites can be used to identify genomic islands in B. cenocepacia. A potassium pump strongly induced only under biofilm conditions was found and 15 non-coding small RNAs highly expressed in biofilms were discovered. Conclusions: Mapping transcription start sites across the B. cenocepacia genome added relevant information to the J2315 annotation. Genes and novel regulatory RNAs putatively involved in B. cenocepacia biofilm formation were identified. These findings will help in understanding regulation of B. cenocepacia biofilm formation

    CRP-cAMP mediates silencing of Salmonella virulence at the post-transcriptional level

    Get PDF
    Invasion of epithelial cells by Salmonella enterica requires expression of genes located in the pathogenicity island I (SPI-1). The expression of SPI-1 genes is very tightly regulated and activated only under specific conditions. Most studies have focused on the regulatory pathways that induce SPI-1 expression. Here, we describe a new regulatory circuit involving CRP-cAMP, a widely established metabolic regulator, in silencing of SPI-1 genes under non-permissive conditions. In CRP-cAMP-deficient strains we detected a strong upregulation of SPI-1 genes in the mid-logarithmic growth phase. Genetic analyses revealed that CRP-cAMP modulates the level of HilD, the master regulator of Salmonella invasion. This regulation occurs at the post-transcriptional level and requires the presence of a newly identified regulatory motif within the hilD 3’UTR. We further demonstrate that in Salmonella the Hfq-dependent sRNA Spot 42 is under the transcriptional repression of CRP-cAMP and, when this transcriptional repression is relieved, Spot 42 exerts a positive effect on hilD expression. In vivo and in vitro assays indicate that Spot 42 targets, through its unstructured region III, the 3’UTR of the hilD transcript. Together, our results highlight the biological relevance of the hilD 3’UTR as a hub for post-transcriptional control of Salmonella invasion gene expression.Spanish Ministry of Economy and Competitiveness BIO2010-15417 BIO2013-44220-R AGL2013-45339-RRecerCaixa program 2012/ACUP/00048Catalonian government 2017SGR49

    A SAM analogue-utilizing ribozyme for site-specific RNA alkylation in living cells

    Get PDF
    Post-transcriptional RNA modification methods are in high demand for site-specific RNA labelling and analysis of RNA functions. In vitro-selected ribozymes are attractive tools for RNA research and have the potential to overcome some of the limitations of chemoenzymatic approaches with repurposed methyltransferases. Here we report an alkyltransferase ribozyme that uses a synthetic, stabilized S-adenosylmethionine (SAM) analogue and catalyses the transfer of a propargyl group to a specific adenosine in the target RNA. Almost quantitative conversion was achieved within 1 h under a wide range of reaction conditions in vitro, including physiological magnesium ion concentrations. A genetically encoded version of the SAM analogue-utilizing ribozyme (SAMURI) was expressed in HEK293T cells, and intracellular propargylation of the target adenosine was confirmed by specific fluorescent labelling. SAMURI is a general tool for the site-specific installation of the smallest tag for azide-alkyne click chemistry, which can be further functionalized with fluorophores, affinity tags or other functional probes

    Possible Consequences for TGF-β1 Signaling

    Get PDF
    Glycosaminoglycans are known to bind biological mediators thereby modulating their biological activity. Sulfated hyaluronans (sHA) were reported to strongly interact with transforming growth factor (TGF)-β1 leading to impaired bioactivity in fibroblasts. The underlying mechanism is not fully elucidated yet. Examining the interaction of all components of the TGF-β1:receptor complex with sHA by surface plasmon resonance, we could show that highly sulfated HA (sHA3) blocks binding of TGF-β1 to its TGF-β receptor-I (TβR-I) and -II (TβR-II). However, sequential addition of sHA3 to the TβR-II/TGF-β1 complex led to a significantly stronger recruitment of TβR-I compared to a complex lacking sHA3, indicating that the order of binding events is very important. Molecular modeling suggested a possible molecular mechanism in which sHA3 could potentially favor the association of TβR-I when added sequentially. For the first time bioactivity of TGF-β1 in conjunction with sHA was investigated at the receptor level. TβR-I and, furthermore, Smad2 phosphorylation were decreased in the presence of sHA3 indicating the formation of an inactive signaling complex. The results contribute to an improved understanding of the interference of sHA3 with TGF-β1:receptor complex formation and will help to further improve the design of functional biomaterials that interfere with TGF-β1-driven skin fibrosis

    Gießkanne oder Matthäus? Muster des Erbens und ihre Konsequenzen für die soziale Ungleichheit

    Full text link
    "Nie zuvor stand eine Generation von Erben einer Generation von zukünftigen Erblassern gegenüber, die über so große Vermögen verfügte. Diese Vermögen konnten in der zweiten Hälfte des 20. Jahrhunderts unter den Bedingungen wirtschaftlichen Wohlstands und politischer Stabilität akkumuliert werden. Um die Konsequenzen dieser Erbschaften für die soziale Ungleichheit abschätzen zu können, sind empirisch fundierte Kenntnisse zu den Erblassern und ihren Motiven, den Erben und ihren Lebenszusammenhängen und auch den Verteilungsmustern der Erbschaften z.B. zwischen Geschwistern nötig. Werden durch Vermögensvererbung soziale Ungleichheiten reproduziert und möglicherweise verstärkt? Oder tragen Erbschaften zur Umverteilung und damit zu mehr Gleichheit in der Erbengeneration bei? Der Vortrag fasst zentrale Thesen und Befunde aus der Literatur zu diesem Themenkomplex zusammen und stellt ausgewählte empirische Befunde vor." (Autorenreferat

    Impact of pseudouridylation, substrate fold, and degradosome organization on the endonuclease activity of RNase E.

    Get PDF
    The conserved endoribonuclease RNase E dominates the dynamic landscape of RNA metabolism and underpins control mediated by small regulatory RNAs in diverse bacterial species. We explored the enzyme's hydrolytic mechanism, allosteric activation, and interplay with partner proteins in the multicomponent RNA degradosome assembly of Escherichia coli. RNase E cleaves single-stranded RNA with preference to attack the phosphate located at the 5' nucleotide preceding uracil, and we corroborate key interactions that select that base. Unexpectedly, RNase E activity is impeded strongly when the recognized uracil is isomerized to 5-ribosyluracil (pseudouridine), from which we infer the detailed geometry of the hydrolytic attack process. Kinetics analyses support models for recognition of secondary structure in substrates by RNase E and for allosteric autoregulation. The catalytic power of the enzyme is boosted when it is assembled into the multienzyme RNA degradosome, most likely as a consequence of substrate capture and presentation. Our results rationalize the origins of substrate preferences of RNase E and illuminate its catalytic mechanism, supporting the roles of allosteric domain closure and cooperation with other components of the RNA degradosome complex
    corecore